If $$\sqrt{3}\cos\theta=\sin\theta$$, then the value of $$\frac{4\sin^2\theta-5\cos\theta}{3\cos\theta+1}$$ is:
Given, Â $$\sqrt{3}\cos\theta=\sin\theta$$
$$\Rightarrow$$ Â $$\sqrt{3}=\frac{\sin\theta}{\cos\theta\ }$$
$$\Rightarrow$$Â $$\tan\theta\ =\sqrt{3}$$
$$\Rightarrow$$ Â $$\tan\theta\ =\tan60^{\circ\ }$$
$$\Rightarrow$$ Â $$\theta =60^{\circ\ }$$
$$\therefore\ $$ $$\frac{4\sin^2\theta-5\cos\theta}{3\cos\theta+1}=\frac{4\sin^260^{\circ\ }-5\cos60^{\circ\ }}{3\cos60^{\circ}+1}$$
$$=\frac{4\left(\frac{\sqrt{3}}{2}\right)^2-5\left(\frac{1}{2}\right)}{3\left(\frac{1}{2}\right)+1}$$
$$=\frac{4\left(\frac{3}{4}\right)-\frac{5}{2}}{\frac{3}{2}+1}$$
$$=\frac{3-\frac{5}{2}}{\frac{5}{2}}$$
$$=\frac{\frac{1}{2}}{\frac{5}{2}}$$
$$=\frac{1}{5}$$
Hence, the correct answer is Option B
Create a FREE account and get: