If $$12 \cot^2 \theta - 31 \cosec \theta + 32 = 0, 0^\circ < \theta < 90^\circ$$, then the value of $$\tan \theta$$ will be:
As per the given question,
$$12 \cot^2 \theta - 31 \cosec \theta + 32 = 0, 0^\circ < \theta < 90^\circ$$
$$12(\cosec^2 \theta-1)-31 \cosec \theta+32=0$$
$$12 \cosec^2 \theta-31 \cosec \theta+20=0$$
Let $$\cosec \theta=x$$
$$12 x^2-31x+20=0$$
$$12x^2-15x-16x+20=0$$
$$3x(4x-5)-4(4x-5)=0$$
$$(4x-5)(3x-4)=0$$
So, $$x=\dfrac{5}{4}$$ or $$x=\dfrac{4}{3}$$
So, $$\sin \theta=\dfrac{4}{5}$$ or $$\sin \theta=\dfrac{3}{4}$$
Hence, $$\tan \theta=\dfrac{4}{3} or \tan \theta=\dfrac{3}{\sqrt 7}$$
$$\tan \theta=\dfrac{4}{3} or \tan \theta=\dfrac{3\sqrt 7}{7}$$
Create a FREE account and get: