The value ofÂ
$$1\frac{2}{3} \div \left\{\frac{3}{7} of \frac{14}{5} \times 1\frac{2}{3} - \left(3\frac{1}{2} - 2\frac{1}{6} \right)\right\} + \frac{1}{2} \div \frac{3}{2} of \frac{1}{2}$$ is:
Given Equation :Â
$$1\frac{2}{3} \div \left\{\frac{3}{7} of \frac{14}{5} \times 1\frac{2}{3} - \left(3\frac{1}{2} - 2\frac{1}{6} \right)\right\} + \frac{1}{2} \div \frac{3}{2} of \frac{1}{2}$$ is
Lets solve it as per the rule of BODMAS :Â
=Â $$\frac{5}{3}\div\left\{\frac{3}{7}of\frac{14}{5}\times\frac{5}{3}-\left(\frac{5}{2}-\frac{13}{6}\right)\right\}+\frac{1}{2}\div\frac{3}{2}of\frac{1}{2}$$
= $$\frac{5}{3}\div\left\{\frac{3}{7}of\frac{14}{5}\times\frac{5}{3}-\left(\frac{4}{3}\right)\right\}+\frac{1}{2}\div\frac{3}{2}of\frac{1}{2}$$
=Â $$\frac{5}{3}\div\left\{2-\frac{4}{3}\right\}+\frac{1}{2}\div\frac{3}{2}of\frac{1}{2}$$
=Â $$\frac{5}{3}\div\frac{2}{3}+\frac{1}{2}\div\frac{3}{2}of\frac{1}{2}$$
= $$\frac{5}{3}\times\ \frac{3}{2}+\frac{1}{2}\div\frac{3}{4}$$
= $$\frac{5}{3}\times\ \frac{3}{2}+\frac{1}{2}\times\frac{4}{3}$$
= $$\frac{5}{2}+\frac{2}{3}$$
=Â $$\frac{19}{6}$$
=Â $$3\frac{1}{6}$$
Hence, Option A is correct.Â
Create a FREE account and get: