Question 61

The total surface area of a hollow cuboid is 340 cm$$^2$$. If the length and the breadth of the cuboid are 10 cm and 8 cm respectively, then whatis the length of the longest stick that can be fitted inside the cuboid?

Solution

vol of cuboid = $$2\times(l\times b + b\times h +h\times l)$$

       340       =  $$2\times(10\times 8 + 8\times h +h\times 10)$$   

      h = 5$$cm$$      

length of longest rod = diagonal of cuboid

  diagonal of cuboid =   $$\sqrt{l^2 + b^2 + h^2}$$ cm   

                                 = $$\sqrt{10^2 + 8^2 + 5^2}$$ cm   

                                  =$$3\sqrt{21}$$ cm


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App