The total surface area of a hollow cuboid is 340 cm$$^2$$. If the length and the breadth of the cuboid are 10 cm and 8 cm respectively, then whatis the length of the longest stick that can be fitted inside the cuboid?
vol of cuboid = $$2\times(l\times b + b\times h +h\times l)$$
    340    = $$2\times(10\times 8 + 8\times h +h\times 10)$$ Â
   h = 5$$cm$$   Â
length of longest rod = diagonal of cuboid
 diagonal of cuboid =  $$\sqrt{l^2 + b^2 + h^2}$$ cm  Â
                 = $$\sqrt{10^2 + 8^2 + 5^2}$$ cm  Â
                 =$$3\sqrt{21}$$ cm
Create a FREE account and get: