Let $$\triangle$$ABC $$\sim$$ $$\triangle$$QPR and $$\frac{ar(\triangle ABC)}{ar(\triangle PQR)} = \frac{4}{25}$$. If AB = 12 cm, BC = 8 cm and AC = 10 cm, then QR is equal to:
Let AD is the altitude of $$\triangle$$ABC and QT is the altitude of $$\triangle$$QPR as shown in figure
Given, $$\triangle$$ABC $$\sim$$ $$\triangle$$QPR
$$=$$> $$\frac{AB}{QP}=\frac{BC}{PR}=\frac{AC}{QR}=\frac{AD}{QT}$$
Let $$\frac{AB}{QP}=\frac{BC}{PR}=\frac{AC}{QR}=\frac{AD}{QT}=t$$
Given, $$\frac{ar(\triangle ABC)}{ar(\triangle PQR)} = \frac{4}{25}$$
$$=$$> $$\frac{\frac{1}{2}\times AD\times BC}{\frac{1}{2}\times QT\times PR}=\frac{4}{25}$$
$$=$$> $$\frac{tQT\times tPR}{QT\times PR}=\frac{4}{25}$$
$$=$$> $$t^2=\frac{4}{25}$$
$$=$$> $$t=\frac{2}{5}$$
$$\therefore\ $$ $$\frac{AC}{QR}=t=\frac{2}{5}$$
$$=$$> $$\frac{10}{QR}=\frac{2}{5}$$
$$=$$> QR = 25 cm
Hence, the correct answer is Option B
Create a FREE account and get: