Given, $$x=2+\sqrt{5}$$
$$=$$> $$\ \frac{1}{x}=\ \frac{1}{2+\sqrt{5}}$$
$$=$$> $$\ \frac{1}{x}=\ \frac{1}{2+\sqrt{5}}\times\ \frac{2-\sqrt{5}}{2-\sqrt{5}}$$
$$=$$> $$\ \frac{1}{x}=\ \frac{2-\sqrt{5}}{4-5}$$
$$=$$> $$\ \frac{1}{x}= \sqrt{5}-2$$
$$\therefore\ x+\frac{1}{x}=(2+\sqrt{5})+(\sqrt{5}-2)=2\sqrt{5}$$
$$=$$> $$\left(\ x+\frac{1}{x}\right)^3=(2\sqrt{5})^3$$
$$=$$> $$x^3+\frac{\ 1}{x^3}+3.x.\frac{1}{x}\left(\ x+\frac{1}{x}\right)=8\left(5\sqrt{5}\right)$$
$$=$$> $$x^3+\frac{\ 1}{x^3}+3\left(2\sqrt{5}\right)=40\sqrt{5}$$
$$=$$> $$x^3+x^{-3}=34\sqrt{5}$$
Hence, the correct answer is Option A
Create a FREE account and get: