If $$x(2x+3)=90$$ and $$7y^{\frac{-1}{2}}+2y^{\frac{-1}{2}}=y^{\frac{1}{2}}$$ (x and y are positive numbers), then what is the value of $$x^2 + y^2$$ ?
Given : $$x(2x+3)=90$$
=> $$2x^2+3x-90=0$$
=> $$2x^2-12x+15x-90=0$$
=> $$2x(x-6)+15(x-6)=0$$
=> $$(x-6)(2x+15)=0$$
=> $$x=6,\frac{-15}{2}$$
$$\because x$$ is positive, => $$x=6$$ ---------(i)
Also, $$7y^{\frac{-1}{2}}+2y^{\frac{-1}{2}}=y^{\frac{1}{2}}$$
=> $$\frac{7}{\sqrt{y}}+\frac{2}{\sqrt{y}}=\sqrt{y}$$
=> $$\frac{9}{\sqrt{y}}=\sqrt{y}$$
=> $$y=9$$ --------(ii)
$$\therefore$$ $$x^2+y^2$$
= $$(6)^2+(9)^2=36+81=117$$
=> Ans - (C)
Create a FREE account and get: