If $$a^2 + b^2 = 88 and ab = 6, (a > 0, b > 0)$$ then what is the value of $$(a^3 + b^3) ?$$Â
$$a^2 + b^2 = 88$$ and ab = 6,
$$(a + b)^2$$ - 2ab = 88
$$(a + b )^2$$ = 88 + 2*6
$$(a +b )^2$$ = 100
$$(a + b) $$ = 10(Square root of both sides)
therefore $$(a^3 + b^3) $$
$$(a + b)(a^2 - ab + b^2)$$
= 10*(88-6)
= 820
Create a FREE account and get: