Question 61

If a and b are two positive real numbers such that $$4a^2 + b^2 = 20$$ and ab = 4, then the value of 2a + b is:

Solution

Given,  $$4a^2 + b^2 = 20$$ and $$ab = 4$$

$$=$$>  $$4a^2+b^2+4ab-4ab=20$$

$$=$$>  $$\left(2a\right)^2+b^2+2.2a.b-4ab=20$$

$$=$$>  $$\left(2a+b\right)^2-4ab=20$$

$$=$$>  $$\left(2a+b\right)^2-4\left(4\right)=20$$

$$=$$>  $$\left(2a+b\right)^2-16=20$$

$$=$$>  $$\left(2a+b\right)^2=20+16$$

$$=$$>  $$\left(2a+b\right)^2=36$$

$$=$$>  $$2a+b=6$$

Hence, the correct answer is Option C


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App