If a and b are two positive real numbers such that $$4a^2 + b^2 = 20$$ and ab = 4, then the value of 2a + b is:
Given, Â $$4a^2 + b^2 = 20$$ and $$ab = 4$$
$$=$$> Â $$4a^2+b^2+4ab-4ab=20$$
$$=$$> Â $$\left(2a\right)^2+b^2+2.2a.b-4ab=20$$
$$=$$> Â $$\left(2a+b\right)^2-4ab=20$$
$$=$$> Â $$\left(2a+b\right)^2-4\left(4\right)=20$$
$$=$$> Â $$\left(2a+b\right)^2-16=20$$
$$=$$> Â $$\left(2a+b\right)^2=20+16$$
$$=$$> Â $$\left(2a+b\right)^2=36$$
$$=$$> Â $$2a+b=6$$
Hence, the correct answer is Option C
Create a FREE account and get: