Question 60

If $$pq(p+q)=1$$, then the value of $$\frac{1}{p^3q^3}-p^3-q^3$$ is equal to

Solution

Given : $$pq(p+q)=1$$

=> $$p+q=\frac{1}{pq}$$ -----------(i)

Cubing both sides

=> $$(p+q)^3=(\frac{1}{pq})^3$$

=> $$p^3+q^3+3pq(p+q)=\frac{1}{p^3q^3}$$

=> $$p^3+q^3+3pq(\frac{1}{pq})=\frac{1}{p^3q^3}$$     [Using (i)]

=> $$\frac{1}{p^3q^3}-p^3-q^3=3$$

=> Ans - (C)


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App