The chord of a circle is 10 cm in length and at a distance of $$\frac{10}{\sqrt3}$$cm from the centre. Calculate the angle subtended by the chord at the centre of a circle.
Given : AB = 10 cm and OM = $$\frac{10}{\sqrt3}$$ cm
To find : $$\angle$$ AOB = $$\theta$$ = ?
Solution : Perpendicular from the centre to the chord bisects the chord, => MB = $$\frac{10}{2}=5$$ cm
Also, $$\angle$$ AOB = $$2\angle$$ MOB
=> $$\angle$$ MOB = $$\frac{\theta}{2}$$ ------------(i)
Now, in $$\triangle$$ OMB
=> $$tan(\angle MOB)=\frac{MB}{OM}$$
=> $$tan(\frac{\theta}{2})=5\div\frac{10}{\sqrt3}$$
=> $$tan(\frac{\theta}{2})=5\times\frac{\sqrt3}{10}$$
=> $$tan(\frac{\theta}{2})=\frac{\sqrt3}{2}$$
=> $$\frac{\theta}{2}=tan^{-1}(\frac{\sqrt3}{2})$$
=> $$\theta=2 \tan^{-1}(\frac{\sqrt{3}}{2})$$
=> Ans - (A)
Create a FREE account and get: