An isosceles triangle ABC has sides AB = AC. If side BA is produced to D in such a manner that AC = AD. Then what will be the measure of angle BCD?
Given : ABC is an isosceles triangle and AB = AC = AD
To find : $$\angle$$ BCD = ?
Solution : $$\because$$ AB = AC, => $$\angle$$ ACB =Â $$\angle$$Â ABC = $$\theta$$
Similarly, $$\angle$$ ACD = $$\angle$$ ADC = $$\theta$$
Now, in $$\triangle$$ BCD,Â
=>Â $$\angle$$Â ABC + ($$\angle$$Â ACB +Â $$\angle$$Â ACD) +Â $$\angle$$Â ADC = $$180^\circ$$
=> $$\theta+\theta+\theta+\theta=180^\circ$$
=> $$\theta=\frac{180^\circ}{4}=45^\circ$$
$$\therefore$$Â $$\angle$$Â BCD = $$\theta+\theta=45^\circ+45^\circ=90^\circ=\frac{\pi}{2}$$
=> Ans - (D)
Create a FREE account and get: