The ratio of three numbers is $$\frac{1}{4} : \frac{5}{6} : \frac{1}{3}$$ respectively. If the sum of the numbers is 68, what is the value of $$\frac{1}{3}$$ of the first number?
The ratio of three numbers is $$\frac{1}{4} : \frac{5}{6} : \frac{1}{3}$$ respectively.
Let's assume the three numbers are $$\frac{1}{4}y, \frac{5}{6}y, \frac{1}{3}y$$ respectively
If the sum of the numbers is 68.
$$\frac{1}{4}y+\frac{5}{6}y+\frac{1}{3}y =Â 68$$
$$\frac{3}{12}y+\frac{10}{12}y+\frac{4}{12}y=68$$
$$\frac{17}{12}y=68$$Value of $$\frac{1}{3}$$ of the first number = $$\frac{1}{3}$$ of $$\frac{1}{4}y$$
=Â $$\frac{1}{3}\times\frac{1}{4}\times\ 48$$
= $$\frac{1}{12}\times\ 48$$
= 4
Create a FREE account and get: