Question 59

If, $$\frac{(a+b)}{\sqrt{ab}}=\frac{2}{1}$$, then the value of (a-b) is

Solution

Given : $$\frac{(a+b)}{\sqrt{ab}}=\frac{2}{1}$$

=> $$a+b=2\sqrt{ab}$$

=> $$a+b-2\sqrt{ab}=0$$

=> $$(\sqrt a)^2+(\sqrt b)^2-2(\sqrt a)(\sqrt b)=0$$

=> $$(\sqrt a-\sqrt b)^2=0$$

=> $$\sqrt a - \sqrt b = 0$$

=> $$\sqrt a = \sqrt b$$

Squaring both sides, we get :

=> $$a=b$$

=> $$(a-b)=0$$

=> Ans - (B)


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App