Given that,
a + b + c = 6
ab + bc + ca = 5
Now, we know that $$(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca$$
$$\Rightarrow (6)^2=a^2+b^2+c^2+2\times(5)$$
$$\Rightarrow 36=a^2+b^2+c^2+10$$
$$\Rightarrow a^2+b^2+c^2=26$$
Hence, $$a^3 + b^3 + c^3 - 3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$$
Now, substituting the values,
$$\Rightarrow a^3 + b^3 + c^3 - 3abc=(6)(26-5)$$
$$\Rightarrow a^3 + b^3 + c^3 - 3abc=6\times21$$
$$\Rightarrow a^3 + b^3 + c^3 - 3abc=126$$
Create a FREE account and get: