If $$(5\sqrt5 x^3 - 81 \sqrt3 y^3) \div (\sqrt5 x - 3\sqrt3 y) = (Ax^2 + By^2 +Cxy)$$,then the value of $$(6A + B - \sqrt{15} C)$$ is:
$$(5\sqrt5 x^3 - 81 \sqrt3 y^3) \div (\sqrt5 x - 3\sqrt3 y)$$
Using the formula ,
$$ (a^3 - b^3) = (a -b)(a^2 +ab +b^2)$$
$$(5\sqrt5 x^3 - 81 \sqrt3 y^3) \div (\sqrt5 x - 3\sqrt3 y) $$
= $$5x^2 + 3\sqrt15xy + 9\sqrt{3}y^2$$
A = 5 , B = 27 , C=3$$\sqrt15$$
Putting these values in ,
$$(6A + B - \sqrt{15} C)$$ = 30 + 27 - 45 =12
So , the answer would be Option d)12.
Create a FREE account and get: