HCF of 3240, 3600 and a third number is 36 and their LCM is $$2^4 \times 3^5 \times 5^2 \times 7^2$$. The third number is
Let the third number be $$x$$. H.C.F. = 36. Prime factorization of :
3240 = $$2^3\times3^4\times5$$
3600 = $$2^4\times3^2\times5^2$$
=> $$x=2^2\times3^{n}\times k$$, where $$n\geq2$$ and $$k$$ is any prime number and $$k\neq5$$
Also, LCM is $$2^4 \times 3^5 \times 5^2 \times 7^2$$
=> $$n=5$$ and $$k=7^2$$
$$\therefore$$ $$x=2^2\times3^5\times7^2$$
=> Ans - (B)
Create a FREE account and get: