The height of a cone is equal to its base radius and its volume is $$72 \pi cm^3$$. What is its curved surface area in $$cm^2$$ ?
Given,Â
Height of Cone = Radius of same cone
Volume of cone = 72Â $$\pi\ cm^3$$
As we know,
Volume of cone =Â $$\frac{1}{3}\pi r^2h\ $$
Now,Â
$$\longrightarrow\ \frac{1}{3}\pi r^2r\ $$ (Given, h = r)
$$\longrightarrow\ \frac{1}{3}\pi r^3=72\pi\ $$
$$\longrightarrow\ r^3=216$$
$$\longrightarrow\ r=6cm$$, h = 6 cm
$$\longrightarrow\ l^2=h^2+r^2$$
$$\longrightarrow\ l^2=36+36$$
$$\longrightarrow\ l=6\sqrt{\ 2}cm$$
Curved Surface area of Cone :Â $$\pi\ rl$$
=Â $$\pi\ 6\times\ 6\sqrt{\ 2}$$
=Â $$36\sqrt{\ 2}$$
Hence, Option B is correct.Â
Create a FREE account and get: