In a circle with centre O, AB is the diameter and CD is a chord such that ABCD is a trapezium. If $$\angle$$BAC = $$40^\circ$$, then $$\angle$$CAD is equal to:
$$\angle\ BAC\ =\ 40$$
$$\angle\ ACB=90\ $$ (Angle on semicircle)
ABCD is a trapezium, so AB is parallel to CD
$$\angle\ ACD=\angle\ BAC=40$$ (Alternate angle)
$$\angle\ BCD=\angle\ ACB+\angle\ ACD=90+40=130$$
ABCD is a cyclic quadrilateral because all point lies on same circle
$$\angle\ BAD+\angle\ BCD=180$$
$$\angle\ BAD+130=180$$
$$\angle\ BAD=50$$
$$\angle\ BAD=\angle\ BAC+\angle\ CAD$$
$$50=40+\angle\ CAD$$
$$\angle\ CAD=50-40=10$$
Create a FREE account and get: