Expression :Â $$x+\frac{1}{x}=3$$
Squaring both sides,
=> $$(x+\frac{1}{x})^2=(3)^2$$
=> $$x^2+\frac{1}{x^2}+2.x.\frac{1}{x}=9$$
=> $$x^2+\frac{1}{x}^2=9-2=7$$
Squaring both sides, we get :Â
=> $$(x^2+\frac{1}{x^2})^2=(7)^2$$
=> $$x^4+\frac{1}{x^4}+2.x^2.\frac{1}{x^2}=49$$
=> $$x^4+\frac{1}{x}^4=49-2=47$$
Again squaring both sides,Â
=> $$(x^4+\frac{1}{x^4})^2=(47)^2$$
=> $$x^8+\frac{1}{x^8}+2.x^4.\frac{1}{x^4}=2209$$
=> $$x^8+\frac{1}{x}^8=2209-2=2207$$
=> Ans - (C)
Create a FREE account and get: