Question 58

If $$\sin \theta = 4 \cos \theta$$, then what is the value of $$\sin \theta \cos \theta$$ ?

Solution

Given that,

$$\sin \theta = 4 \cos \theta$$

So,

$$\dfrac{\sin \theta}{ \cos \theta} = 4$$

$$\tan \theta = 4$$

$$\tan \theta=\dfrac{AB}{BC}=\dfrac{4}{1}$$

$$\Rightarrow AB^2+BC^2=AC^2$$

$$\Rightarrow 4^2+1= AC^2$$

$$\Rightarrow \sqrt{17} =AC$$

So

$$\sin \theta=\dfrac{AB}{AC}=\dfrac{4}{\sqrt{17}}$$

$$\cos \theta=\dfrac{BC}{AC}=\dfrac{1}{\sqrt{17}}$$

Now, substituting the values,

$$\sin \theta \cos \theta =\dfrac{4}{\sqrt{17}} \times \dfrac{1}{\sqrt{17}}=\dfrac{4}{17}$$


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App