Question 58

If a+b=2c, then the value of $$\frac{a}{a-c}+\frac{c}{b-c}$$ is equal to where $$a\neq b \neq c$$

Solution

Given : $$a+b=2c$$

=> $$a+b=c+c$$

=> $$a-c=c-b$$ ----------(i)

To find : $$\frac{a}{a-c}+\frac{c}{b-c}$$ 

= $$\frac{a}{c-b}-\frac{c}{c-b}$$     [Using equation (i)]

= $$\frac{a-c}{c-b}$$

= $$\frac{c-b}{c-b}=1$$

=> Ans - (B)


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App