If a+b=2c, then the value of $$\frac{a}{a-c}+\frac{c}{b-c}$$ is equal to where $$a\neq b \neq c$$
Given : $$a+b=2c$$
=> $$a+b=c+c$$
=> $$a-c=c-b$$ ----------(i)
To find : $$\frac{a}{a-c}+\frac{c}{b-c}$$Â
= $$\frac{a}{c-b}-\frac{c}{c-b}$$ Â Â [Using equation (i)]
= $$\frac{a-c}{c-b}$$
= $$\frac{c-b}{c-b}=1$$
=> Ans - (B)
Create a FREE account and get: