If $$a + b = 8$$ and $$a + a^2b + b + ab^2 = 128$$ then the positive value of $$a^3 + b^3$$ is:
Given, $$a + b = 8$$
$$a + a^2b + b + ab^2 = 128$$
$$=$$> Â $$a\left(1+ab\right)+b\left(1+ab\right)=128$$
$$=$$> Â $$\left(1+ab\right)\left(a+b\right)=128$$
$$=$$> Â $$\left(1+ab\right)8=128$$
$$=$$> Â $$ 1+ab =\frac{128}{8}$$
$$=$$> Â $$1+ab=16$$
$$=$$> Â $$ab=15$$
$$\therefore\ $$ $$a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)$$
$$= 8 (a^2+b^2+2ab-3ab)$$
$$=8 \left(\left(a+b\right)^2-3ab\right)$$
$$=8 \left(8^2-3\left(15\right)\right)$$
$$=8 \left(64-45\right)$$
$$=152$$
Hence, the correct answer is Option D
Create a FREE account and get: