If $$\sec A = \frac{\sqrt{11}}{3}$$, then the value of $$\frac{\cosec^2 A + \tan ^2 A}{\sin^2 A + \cot^2 A}$$ is:
Given, Â $$\sec A = \frac{\sqrt{11}}{3}$$
$$=$$> Â $$\cos A=\frac{3}{\sqrt{11}}$$
$$\frac{\operatorname{cosec}^2A+\tan^2A}{\sin^2A+\cot^2A}=\frac{\frac{1}{\sin^2A}+\tan^2A}{\sin^2A+\frac{1}{\tan^2A}}$$
$$=\frac{\frac{1}{1-\cos^2A}+\sec^2A-1}{1-\cos^2A+\frac{1}{\sec^2A-1}}$$
$$=\frac{\frac{1}{1-\left(\frac{3}{\sqrt{11}}\right)^2}+\left(\frac{\sqrt{11}}{3}\right)^2-1}{1-\left(\frac{3}{\sqrt{11}}\right)^2+\frac{1}{\left(\frac{\sqrt{11}}{3}\right)^2-1}}$$
$$=\frac{\frac{1}{1-\frac{9}{11}}+\frac{11}{9}-1}{1-\frac{9}{11}+\frac{1}{\frac{11}{9}-1}}$$
$$=\frac{\frac{11}{2}+\frac{2}{9}}{\frac{2}{11}+\frac{9}{2}}$$
$$=\frac{\frac{99+4}{18}}{\frac{4+99}{22}}$$
$$=\frac{103}{18}\times\frac{22}{103}\ $$
$$=\frac{11}{9}$$
Hence, the correct answer is Option B
Create a FREE account and get: