Question 57

If A : B = 2 : 3, B : C = 4 : 5 and C : D = 6 : 7, then the value of $$\frac{A + B + C}{D}$$ is:

Solution

A : B = 2 : 3    Eq.(i)

B : C = 4 : 5    Eq.(ii)

Merge the ratios of Eq.(i) and Eq.(ii).

A : B : C = $$2\times4 : 3\times4 : 5\times3$$

A : B : C = $$8 : 12 : 15$$    Eq.(iii)

C : D = 6 : 7    Eq.(iv)

Merge the ratios of Eq.(iii) and Eq.(iv).

A : B : C : D = $$8\times6 : 12\times6 : 15\times6 : 15\times7$$

= $$48 : 72 : 90 : 105$$

We can assume the values of A, B, C and D are 48y, 72y, 90y, 105y.

Value of $$\frac{A + B + C}{D}$$ = $$\frac{48y+72y+90y}{105y}$$

= $$\frac{210y}{105y}$$

= 2


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App