Two chords, AB and CD ofcircle meet at a point O, outside the circle. It is given that AB = 7 cm, CD =4 cm, OB = 5 cm. What is the length of OD?
If two chords, AB and CD of circle meet at a point O, outside the circle then $$OA\times\ OB=OC\times\ OD$$
Given AB=7cm, OB = 5 cm, CD = 4 cm let OD= x
So, OA=12 and OC=4+x
$$12\times\ 5=\left(4+x\right)\times\ x$$
$$x^2+4x-60=0$$
$$x^2+10x-6x+60=0$$
$$x\left(x+10\right)-6\left(x+10\right)=0$$
$$x=6 Â cm$$
Create a FREE account and get: