$$\left(\frac{1}{1 + \sin^2 \theta} + \frac{1}{1 + \cosec^2 \theta}\right)$$
where Cosec(t) = $$\frac{1}{sint}$$ transform the expression
=$$\frac{1}{1+sin^2t}$$ + $$\frac{1}{1+ (1÷sin^2t)}$$
=$$\frac{1}{1+sin^2t}$$ + $$\frac{1}{(sin^2t+1÷sin^2t)}$$
=$$\frac{1}{1+sin^2t}$$ + $$\frac{sin^2t}{sin^2t+1}$$ take the orders of this then reduce simplification is
=$$\frac{1+ sin^2t}{1+sin^2t}$$
= 1
Create a FREE account and get: