If $$\tan \theta = \frac{2}{3}, then \frac{3 \sin \theta - 4 \cos \theta}{3 \sin \theta + 4 \cos \theta}$$ is equal to:
$$\tan \theta = \frac{2}{3}$$
$$\frac{prependicular}{base}=\frac{2}{3},hypotenuse=\sqrt{\ 13}$$
$$\sin=\frac{p}{h},\cos=\frac{b}{h}$$
$$ \frac{3 \sin \theta - 4 \cos \theta}{3 \sin \theta + 4 \cos \theta}$$
$$\frac{\left(\frac{6}{\sqrt{\ 3}}-\frac{12}{\sqrt{\ 3}}\right)}{\frac{6}{\sqrt{\ 3}}+\frac{12}{\sqrt{\ 3}}}=-\frac{6}{18}=-\frac{1}{3}$$
Create a FREE account and get: