Question 56

A bucket in the shape of the frustum of a cone has its top and bottom radii as 20 cm and 10 cm, respectively. The depth of the bucket is 24 cm. The capacity of the bucket is: (Take $$\pi=\frac{22}{7}$$)

Solution

Given,

  • A bucket is in the shape of frustum.
  • Top radii (R) = 20 cm
  • Bottom radii (r) = 10 cm
  • Depth of bucket (H) = 24 cm

Capacity / Volume of bucket =

 $$\frac{1}{3}\times\pi\times\left(R^2+r^2+Rr\right)\times\ H$$ 

$$=\frac{1}{3}\times\pi\times\left(20^2+10^2+20\times\ 10\right)\times\ 24$$

$$=\frac{1}{3}\times\frac{22}{7}\times\left(700\right)\times\ 24$$

$$=17600\ cm^3$$


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App