If in a $$\triangle$$ABC, the bisectors of $$\angle$$B and $$\angle$$C meet at O, inside the triangle. If $$\angle$$BOC = $$156^\circ$$ , then the measure of $$\angle$$A is:
From the figure,
OB and OC are angular bisectors of $$\angle$$B and $$\angle$$C
$$=$$> $$\angle$$OBC = $$\frac{\angle \text{B}}{2}$$ and $$\angle$$OCB = $$\frac{\angle \text{C}}{2}$$
$$=$$>  $$\angle$$B = 2$$\angle$$OBC and  $$\angle$$C = 2$$\angle$$OCB
In $$\triangle$$OBC,
$$\angle$$BOC + $$\angle$$OBC + $$\angle$$OCB = 180$$^{\circ\ }$$
$$=$$> Â 156$$^{\circ\ }$$Â + $$\angle$$OBC + $$\angle$$OCB = 180$$^{\circ\ }$$
$$=$$> Â $$\angle$$OBC + $$\angle$$OCB =Â 180$$^{\circ\ }$$-Â 156$$^{\circ\ }$$
$$=$$> Â $$\angle$$OBC + $$\angle$$OCB = Â 24$$^{\circ\ }$$ ..................(1)
$$\angle$$A + $$\angle$$B + $$\angle$$C = 180$$^{\circ\ }$$
$$=$$> Â $$\angle$$A + 2$$\angle$$OBC + 2$$\angle$$OCBÂ = 180$$^{\circ\ }$$
$$=$$> Â $$\angle$$A +Â $$2\left(\angle \text{OBC}+\angle \text{OCB}\right)$$ =Â 180$$^{\circ\ }$$
$$=$$> Â $$\angle$$A +Â $$2\left(24^{\circ\ }\right)$$ =Â 180$$^{\circ\ }$$
$$=$$>Â $$\angle$$A =Â 180$$^{\circ\ }$$-Â 48$$^{\circ\ }$$
$$=$$> $$\angle$$A =Â $$132^\circ$$
Hence, the correct answer is Option A
Create a FREE account and get: