Question 55

If $$\cos x = \frac{p}{q}$$ and $$0^\circ < x < 90^\circ$$, then the value of $$\tan x$$ is:

Solution

Given,  $$\cos x = \frac{p}{q}$$

$$\therefore\ $$ $$\tan x=\frac{\sin x}{\cos x}$$

$$=\frac{\sqrt{1-\cos^2x}}{\cos x}$$

$$=\frac{\sqrt{1-\left(\frac{p}{q}\right)^2}}{\frac{p}{q}}$$

$$=\frac{\sqrt{\frac{q^2-p^2}{q^2}}}{\frac{p}{q}}$$

$$=\frac{\frac{\sqrt{q^2-p^2}}{q}}{\frac{p}{q}}$$

$$=\frac{\sqrt{q^2-p^2}}{p}$$

Hence, the correct answer is Option B


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App