What is the radius of the circle whose area is equal to the sum of the areas of two circles whose radii are 15 cm and 8 cm?
Let the radius of the required circle = r
Given,
Area of the required circle is equal to the sum of the areas of two circles whose radii 15 cm and 8 cm.
$$=$$>Â $$\pi\ r^2=\pi\ \left(15\right)^2+\pi\ \left(8\right)^2$$
$$=$$>Â $$r^2=15^2+8^2$$
$$=$$> Â $$r^2=225+64$$
$$=$$> Â $$r^2=289$$
$$=$$> Â $$r=17 cm$$
$$\therefore\ $$Radius of required circle = 17 cm
Hence, the correct answer is Option D
Create a FREE account and get: