Sign in
Please select an account to continue using cracku.in
↓ →
If $$2x + y = 6$$ and $$xy = 4$$, then find the value of $$8x^3 + y^3$$ is:
Given, $$2x + y = 6$$ and $$xy = 4$$
$$=$$> $$\left(2x+y\right)^3=6^3$$
$$=$$> $$8x^3+y^3+3.2x.y\left(2x+y\right)=216$$
$$=$$> $$8x^3+y^3+6xy\left(2x+y\right)=216$$
$$=$$> $$8x^3+y^3+6\left(4\right)\left(6\right)=216$$
$$=$$> $$8x^3+y^3+144=216$$
$$=$$> $$8x^3+y^3=72$$
Hence, the correct answer is Option C
Create a FREE account and get: