Question 55

If $$2x + y = 6$$ and $$xy = 4$$, then find the value of $$8x^3 + y^3$$ is:

Solution

Given, $$2x + y = 6$$ and $$xy = 4$$

$$=$$> $$\left(2x+y\right)^3=6^3$$

$$=$$> $$8x^3+y^3+3.2x.y\left(2x+y\right)=216$$

$$=$$> $$8x^3+y^3+6xy\left(2x+y\right)=216$$

$$=$$> $$8x^3+y^3+6\left(4\right)\left(6\right)=216$$

$$=$$> $$8x^3+y^3+144=216$$

$$=$$> $$8x^3+y^3=72$$

Hence, the correct answer is Option C


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App