The side BC of a right-angled triangle ABC ($$\angle ABC = 90^\circ$$) is divided into four equal parts at P, Q and R respectively. If $$AP^2 + AQ^2 + AR^2 = 3 b^2 + 17 na^2$$ then n is equal to:
In$$ \triangle ABC, AB=c, BC=a, and AC= b$$
and BP=PQ=QR=RC=$$\frac{a}{4}$$
Now, by pythagoras theorem
$$(AP)^{2}=(AB)^{2}+(BP)^{2}=c^{2}+\left(\frac{a}{4}\right)^{2}$$ ---(i)
$$(AQ)^{2}=(AB)^{2}+(BQ)^{2}=c^{2}+\left(\frac{2a}{4}\right)^{2}$$---(ii)
$$(AR)^{2}=(AB)^{2}+(BR)^{2}=c^{2}+\left(\frac{3a}{4}\right)^{2}$$ ----(iii)
Adding (i), (ii) and (iii)
$$(AP)^{2}+(AQ)^{2}+(AR)^{2}=c^{2}+\frac{a^{2}}{16}+\frac{4a^{2}}{16}+\frac{9a^{2}}{16}$$
$$(AP)^{2}+(AQ)^{2}+(AR)^{2}=3c^{2}+\frac{14a^{2}}{16}=3c^{2}+\frac{7a^{2}}{8}$$
From, $$ \triangle ABC$$,
$$b^{2}=c^{2}+a^{2}$$
$$c^{2}=b^{2}-a^{2}$$
$$(AP)^{2}+(AQ)^{2}+(AR)^{2}=3c^{2}+\frac{7a^{2}}{8}$$
$$(AP)^{2}+(AQ)^{2}+(AR)^{2}=3(b^{2}-a^{2})+\frac{7a^{2}}{8}=3b^{2}-\left(3-\frac{7}{8}\right)a^{2}$$
$$(AP)^{2}+(AQ)^{2}+(AR)^{2}=3b^{2}-\frac{17}{8}a^{2}$$
Now, we will compare,
$$3b^{2}-\frac{17}{8}a^{2}=3 b^2 + 17 na^2$$
Hence, $$n =Â \frac{1}{8}$$
Create a FREE account and get: