$$x^2\ +\ y^2-2x\ +\ 6y+10=0$$
$$x^2\ -2x+\ y^2\ +\ 6y+9+1=0$$
$$x^2\ -2x+1+\ y^2\ +\ 6y+9=0$$
$$\left(x-1\right)^2+\ \left(y+3\right)^2=0$$
Sum of two squares is zero hence both the squares should be zero
Therefore, $$\left(x-1\right)^2=0$$ and $$\left(y+3\right)^2=0$$
                  x = 1 and y = -3
     $$=$$>   $$x^2+y^2=\left(1\right)^2+\left(-3\right)^2$$
                 $$=10$$
                                                      Â
Create a FREE account and get: