If $$\cos x = \frac{-\sqrt3}{2} and \pi < x < \frac{3\pi}{2}$$, then the value of $$4 \cot^2 x - 3 \cosec^2 x$$ is:
As Given in Question :
$$\cos x =Â \frac {-\sqrt3}{2}$$
$$\Rightarrow \cos x = -\cos 30^{\circ}$$
$$\Rightarrow \cos x = -\cos 30^{\circ} = \cos (180 + 30)^{\circ}$$Â Â Â [ $$\because -\cos \theta = \cos (180 + \theta ) ]$$
$$\therefore \cos x = \cos 210^{\circ}$$
$$\Rightarrow x=210^{\circ}$$
Now $$4 \cot^2 x - 3 \cosec^2 x$$
$$\Rightarrow 4 \cot^2 210^{\circ} - 3 \cosec^2 210^{\circ}$$
$$\Rightarrow 4 (\sqrt3)^2 - 3 (-2)^2 $$Â $$Â [ \because \cot (180 + \theta) = \cot \theta , \cosec (180+\theta) = -\cosec \theta] $$
$$\Rightarrow 4\times3 - 3\times4$$
$$\Rightarrow 12 - 12 = 0$$
Create a FREE account and get: