Question 55

If $$(\cosec^2 57^\circ - \tan^2 33^\circ) + 2 \sin 90^\circ - 4 \tan^2 52^\circ y \tan^2 38^\circ = \frac{y}{2}$$, then the value of $$y$$ is:

Solution

$$(\cosec^2 57^\circ - \tan^2 33^\circ) +2 \sin 90^\circ -4 \tan^2 52^\circ y \tan^2 38^\circ = \frac{y}{2}$$

$$=$$> $$(\operatorname{cosec}^257^{\circ}-\tan^2\left(90-57\right)^{\circ})+2 \left(1\right)-4\tan^252^{\circ}y\tan^2\left(90-52\right)^{\circ}=\frac{y}{2}$$

$$=$$> $$(\operatorname{cosec}^257^{\circ}-\cot^257)^{\circ\ }+2-4 \tan^252^{\circ}y\cot^252^{\circ}=\frac{y}{2}$$

$$=$$> $$\left(1\right)+2-4y=\frac{y}{2}$$

$$=$$> $$\frac{y}{2}+4y=3$$

$$=$$> $$\frac{9y}{2}=3$$

$$=$$> $$y=\frac{2}{3}$$

Hence, the correct answer is Option A


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App