Points P and Q are on the sides AB and BC respectively of a triangle ABC, right angled at B. If AQ = 11 cm, PC = 8 cm, and AC = 13 cm, then find the length (in cm) of PQ.
From right angled triangle ABC,
$$\left(x+y\right)^2+\left(w+z\right)^2=13^2$$
$$\left(x+y\right)^2+\left(w+z\right)^2=169$$.........(1)
From right angled triangle ABQ,
$$\left(x+y\right)^2+w^2=11^2$$
$$\left(x+y\right)^2+w^2=121$$..........(2)
From right angled triangle PBC,
$$x^2+\left(w+z\right)^2=8^2$$
$$x^2+\left(w+z\right)^2=64$$...........(3)
Solving (2) + (3) - (1), we get
$$x^2+w^2=121+64-169$$
$$x^2+w^2=16$$.........(4)
From right angled triangle PBQ,
PB$$^2$$ + BQ$$^2$$ = PQ$$^2$$
$$x^2+w^2$$ =Â PQ$$^2$$
PQ$$^2$$ = 16
PQ = 4 cm
Hence, the correct answer is Option C
Create a FREE account and get: