In $$\triangle$$ABC with sides 6 cm, 7 cm and 8 cm,the angle bisector of the largest angle divides the opposite side into two segments. What is the length of the shorter segment?
As per the given in the question,
AB=6cm, BC=8cm and CA=7cm
AD is the angle bisector of $$\angle$$ BAC
As per the angular bisector theorem,
$$\Rightarrow \dfrac{BD}{DC}=\dfrac{AB}{AC}$$,
Now, substituting the values,
$$\Rightarrow \dfrac{BD}{DC}=\dfrac{6}{7}$$,
Let,Â
$$\Rightarrow \dfrac{BD}{DC}=\dfrac{6}{7}=k$$,
So, BD=6k and DC=7k
It is given that, $$BC=8cm =BD+DC$$
$$\Rightarrow 6k+7k=8$$
$$\Rightarrow 13k=8$$
$$\Rightarrow k=\dfrac{8}{13}$$
Hence, $$BD=\dfrac{8}{13}\times 6=\dfrac{48}{13}$$
And, $$DC=\dfrac{8}{13}\times 7=\dfrac{56}{13}$$
Hence the required answer is $$=\dfrac{48}{13}$$
Create a FREE account and get: