If the areas of three adjacent faces of a rectangular box which meet in a corner are $$ 12 cm^2,  15 cm^2  and  20 cm^2$$ respectively. Then the volume of the box is
let length , breadth , height be l, b, h respectively
$$l \times b $$ = 12 ------------- eq 1
$$b \times h $$ = 15---------------eq2
$$h \times l $$ = 20----------------eq3
multiply eq 1 by eq2Â and dividing eq3
we getÂ
$$\frac{l \times b \times b \times h}{h \times l}$$Â = $$b^2$$ =Â $$\frac{12 \times 15}{20}$$Â
b = 3
from eq 1 we get l = 4Â
from eq 2 we get h = 5
volume of the cuboid = $$l \times b \times h$$ =Â $$3 \times 4 \times 5$$ =$$ 60Â cm^3 $$
Create a FREE account and get: