Question 52

If 2x - 1 < 5x + 2 and 2x + 5 < 6 - 3x, then x can take which of the following values?

Solution

Expression 1 : 2x - 1 < 5x + 2

=> $$5x - 2x$$ > $$-1 - 2$$ => $$3x$$ > $$-3$$

=> $$x$$ > $$\frac{-3}{3}$$ => $$x$$ > $$-1$$ --------------(i)

Expression 2 : 2x + 5 < 6 - 3x

=> $$2x + 3x$$ < $$6 - 5$$ => $$5x$$ < $$1$$

=> $$x$$ < $$\frac{1}{5}$$ ------------(ii)

Combining equations (i) and (ii), we get : $$-1$$ < $$x$$ < $$\frac{1}{5}$$

Thus, the only possible value that $$x$$ can take = 0

=> Ans - (B)


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App