Given : $$sec(3x-20^\circ)=cosec(3y+20^\circ)$$
=> $$sec(3x-20^\circ)=cosec[90^\circ-(-3y+70^\circ)]$$
$$\because cosec(90^\circ-\theta)=sec\theta$$
=> $$sec(3x-20^\circ)=sec(-3y+70^\circ)$$
=> $$3x-20^\circ=-3y+70^\circ$$
=> $$3x+3y=70+20=90^\circ$$
=> $$x+y=\frac{90}{3}=30^\circ$$ -----------(i)
$$\therefore$$ $$tan(x+y)=tan(30^\circ)=\frac{1}{\sqrt3}$$
=> Ans - (C)
Create a FREE account and get: