Expression : 2cos[(C+D)/2]sin[(C-D)/2]
Using the formula : $$sin x . cos y = \frac{1}{2} [sin (x + y) + sin (x - y)]$$ --------------(i)
Substituting $$(x + y) = C$$ and $$(x - y) = D$$
=> $$x = \frac{C + D}{2}$$ and $$y = \frac{C - D}{2}$$ in equation (i),
=> $$sin (\frac{C + D}{2}) . cos (\frac{C - D}{2}) = \frac{1}{2} [sin C + sin D]$$
=> $$2 . cos (\frac{C - D}{2}) . sin (\frac{C + D}{2}) = sin C + sin D$$
Replacing D by -D, we get :
=> $$2 . cos(\frac{C - (-D)}{2}) . sin(\frac{C + (-D)}{2}) = sin C + sin(-D)$$
=> $$2 . cos(\frac{C + D}{2}) . sin(\frac{C - D}{2}) = sin C - sin D$$
Create a FREE account and get: