ABCD is an isosceles trapezium such that AD||BC, AB = 5 cm, AD = 8 cm and BC = 14 cm. What is the area $$(in cm^2)$$ of trapezium?
GivenĀ : ABCD is an isosceles trapezium andĀ AB = 5 cm, AD = 8 cm and BC = 14 cm
To find : ar(ABCD) = ?
SolutionĀ : In an isosceles trapezium AB = CD and BE = CF
Also, AD = EF = 8 cm
=> BE + CF = 14 - 8 = 6 cm
=> BE = CF = $$\frac{6}{2}=3$$ cm
In $$\triangle$$ ABE,
=> $$(AE)^2=(AB)^2-(BE)^2$$
=> $$(AE)^2=(5)^2-(3)^2$$
=> $$(AE)^2=25-9=16$$
=> $$AE=\sqrt{16}=4$$ cm
$$\therefore$$ ar(ABCD) = $$\frac{1}{2}\times (AD+BC)\times(AE)$$
=Ā $$\frac{1}{2}\times(8+14)\times4$$
= $$22\times2=44$$ $$cm^2$$
=> Ans - (B)
Create a FREE account and get: