In triangle ABC, ∠ABC = 90°. BP is drawn perpendicular to AC. If ∠BAP = 50°, then what is the value (in degrees) of ∠PBC?
Given : ∠ABC = ∠BPC = 90° and ∠BAP = 50°
To find : ∠PBC = $$\theta$$ = ?
Solution : In $$\triangle$$ ABC,
=> $$\angle$$ BAC + $$\angle$$ ABC + $$\angle$$ ACB = $$180^\circ$$
=> $$50^\circ+90^\circ$$ + $$\angle$$ ACB = $$180^\circ$$
=> $$\angle$$ ACB = $$180-140=40^\circ$$
Similarly, in $$\triangle$$ BPC
=> $$\angle$$ BPC + $$\angle$$ PBC + $$\angle$$ PCB = $$180^\circ$$
=> $$90^\circ+\theta$$ + $$40^\circ$$ = $$180^\circ$$
=> $$\theta$$ = $$180-130=50^\circ$$
=> Ans - (C)
Create a FREE account and get: