Given : $$x+\frac{1}{x}=5$$ ------------(i)
Squaring both sides,
=>Â $$(x+\frac{1}{x})^2=(5)^2$$
=> $$x^2+\frac{1}{x^2}+2(x)(\frac{1}{x})=25$$
=> $$x^2+\frac{1}{x^2}=25-2=23$$ ----------(ii)
Now, cubing equation (i), we get :
=>Â $$(x+\frac{1}{x})^3=(5)^3$$
=> $$x^3+\frac{1}{x^3}+3(x)(\frac{1}{x})(x+\frac{1}{x})=125$$
=> $$x^3+\frac{1}{x^3}+3(5)=125$$
=> $$x^3+\frac{1}{x^3}=125-15=110$$ -----------(iii)
Multiplying equations (ii) and (iii),
=> $$(x^2+\frac{1}{x^2})(x^3+\frac{1}{x^3})=23\times110$$
=> $$x^5+\frac{1}{x^5}+x+\frac{1}{x}=2530$$
=> $$x^5+\frac{1}{x^5}+5=2530$$
=>Â $$x^5+\frac{1}{x^5}=2530-5=2525$$Â
=> Ans - (B)
Create a FREE account and get: