Given :Â $$2x^2+2y^2=4a$$
=> $$x^2+y^2=2a$$ -----------(i)
To find : $$\frac{2a}{x^2-a}+\frac{2a}{y^2-a}$$
= $$2a(\frac{1}{x^2-a}+\frac{1}{y^2-a})$$
= $$2a(\frac{(x^2-a)+(y^2-a)}{(x^2-a)(y^2-a)})$$
= $$2a(\frac{(x^2+y^2)-2a}{(x^2-a)(y^2-a)})$$
Substituting value from equation (i), we get :
= $$2a\times\frac{2a-2a}{(x^2-a)(y^2-a)}$$
= $$2a\times0=0$$
=> Ans - (A)
Create a FREE account and get: