If a + b + c = 9 and ab + bc + ca = 18, then what is the value of $$a^3 + b^3 + c^3 - 3abc$$ ?
Given : $$ab+bc+ca=18$$ ---------------(i)
and $$a+b+c=9$$ --------------(ii)
Squaring both sides, we get :
=> $$(a+b+c)^2=(9)^2$$
=> $$(a^2+b^2+c^2)+2(ab+bc+ca)=81$$
=> $$a^2+b^2+c^2+2(18)=81$$
=> $$a^2+b^2+c^2=81-36=45$$ ------------(iii)
To find : $$a^3 + b^3 + c^3 - 3abc$$
= $$(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$$
Substituting values from equations (i),(ii) and (iii),
= $$(9)(45-18)$$
= $$9\times27=243$$
=> Ans - (B)
Create a FREE account and get: