If $$\alpha$$ and $$\beta$$ are roots of the equation $$3x^2 - 13x + 14 = 0$$, then what is the value of $$(\frac{\alpha}{\beta})+(\frac{\beta}{\alpha})$$ ?
Equation : $$3x^2 - 13x + 14 = 0$$ has roots = $$\alpha$$ and $$\beta$$
Sum of roots = $$\alpha+\beta=\frac{13}{3}$$ ------------(i)
Product of roots = $$\alpha \beta=\frac{14}{3}$$ -----------(ii)
To find : $$(\frac{\alpha}{\beta})+(\frac{\beta}{\alpha})$$
= $$\frac{\alpha^2+\beta^2}{\alpha \beta}=\frac{(\alpha+\beta)^2-2\alpha \beta}{\alpha \beta}$$
Substituting values from equations (i) and (ii),
= $$[(\frac{13}{3})^2-2(\frac{14}{3})]\div(\frac{14}{3})$$
= $$(\frac{169}{9}-\frac{28}{3})\div(\frac{14}{3})$$
= $$(\frac{85}{9})\times(\frac{3}{14})$$
= $$\frac{85}{42}$$
=> Ans - (D)
Create a FREE account and get: