Question 31

Let $$a, b$$ and $$c$$ be the fractions such that $$a < b < c$$. If $$c$$ is divided by $$a$$, the result is $$\frac{5}{2}$$, Which exceeds b by $$\frac{7}{4}$$. If $$a + b + c = 1\frac{11}{12}$$, then $$(c - a)$$ will be equal to:

Solution

ATQ,
$$\frac{c}{a}$$ = $$\frac{5}{2}$$
c = $$\frac{5a}{2}$$
b = $$\frac{5}{2} - \frac{7}{4}$$ = $$\frac{3}{4}$$
$$a + b + c = 1\frac{11}{12} = \frac{23}{12}$$
$$a + \frac{3}{4} + \frac{5a}{2} = \frac{23}{12}$$
$$\frac{7a}{2} = \frac{23}{12} - \frac{3}{4}$$
7a = $$ \frac{23}{6} - \frac{3}{2}$$
7a = $$ \frac{7}{3} $$
a = $$ \frac{1}{3} $$
c = $$\frac{5}{2} \times \frac{1}{3}$$ = $$\frac{5}{6}$$
c - a = $$\frac{5}{6} - \frac{1}{3}$$ = $$\frac{1}{2}$$


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App