Let $$a, b$$ and $$c$$ be the fractions such that $$a < b < c$$. If $$c$$ is divided by $$a$$, the result is $$\frac{5}{2}$$, Which exceeds b by $$\frac{7}{4}$$. If $$a + b + c = 1\frac{11}{12}$$, then $$(c - a)$$ will be equal to:
ATQ,
$$\frac{c}{a}$$ =Â $$\frac{5}{2}$$
c =Â $$\frac{5a}{2}$$
b =Â $$\frac{5}{2} -Â \frac{7}{4}$$ = $$\frac{3}{4}$$
$$a + b + c = 1\frac{11}{12} =Â \frac{23}{12}$$
$$a +Â \frac{3}{4} +Â \frac{5a}{2} =Â \frac{23}{12}$$
$$\frac{7a}{2} =Â \frac{23}{12} -Â \frac{3}{4}$$
7a = $$ \frac{23}{6} - \frac{3}{2}$$
7a = $$ \frac{7}{3} $$
a =Â $$ \frac{1}{3} $$
c = $$\frac{5}{2} \times \frac{1}{3}$$ = $$\frac{5}{6}$$
c - a =Â $$\frac{5}{6} -Â \frac{1}{3}$$ = $$\frac{1}{2}$$
Create a FREE account and get: